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The fracture behavior of multilayers in the nanometer thickness range has attracted an increased atten-
tion due to microelectronics and high-speed technologies. In this work, Al/Si3N4 multilayers fabricated by
magnetron sputtering on the silicon substrate were subjected to three-point bend testing. It was inves-
tigated that the fracture behavior of Al/Si3N4 multilayers with different individual layer thickness k (50,
100, 250 nm) but with the same total thickness (1.0 µm). There is a significant layer thickness effect on
the fracture behavior of the whole multilayer-substrate system: when the individual layer thickness is
large (250 nm), the failure of the whole system was dominated by the fracture of the substrate, while
the failure of the whole system was dominated by the fracture of the multilayer with smaller individual
layer thickness (50 nm). This effect is clearly obvious, although the total thickness of the multilayer is
very small compared with that of the substrate. As the individual layer thickness decreased from 250
nm to 50 nm, the fracture strain on the Al/Si3N4 multilayer decreased from 0.073% to 0.026%.

� 2018 Elsevier B.V. All rights reserved.
1. Introduction

Nano-multilayered composites have attracted an increased
research attention for more than a decade [1–6] due to the distinct
electrical [7–9], magnetic [10], optical [11,12] and mechanical
properties [13–16]. Increasing interest is also paid on the investi-
gation of deformation and fracture behaviors of the multilayered
composites due to the implication on the reliability issue in the
applications.

For metal film on the flexible substrate, experimental testing
results have shown that most flexible-supported thin metal films
rupture at small tensile strain [17–25]. However, theoretical calcu-
lations showed that delocalizing strain of the polymer substrate
caused the metal film elongating indefinitely [26,27]. This differ-
ence between experiment and theory may be caused by the effects
of very small grain size, thin film thickness and inadequate interfa-
cial adhesion [22,27].

It was studied that there exists a significant length-scale or
layer thickness effect on the deformation behavior and the
strength of metallic/ceramic multilayers on the brittle substrate.
When the individual layer thickness decreased to sub-micron scale
or even nanometer scale, where the thinner the individual layer is,
the higher the strength is [28–37]. It was further reported that the
deformation of the multilayers with sub-micron layer thicknesses
is dominated by the pileup of dislocations at interfaces, and the
increase in strength follows a Hall-Petch relationship with
rflow / k�0:5, where k is the individual layer thickness [34,38–40].
However, when the layer thickness is further decreased to the
range of 10–50 nm, there is no enough space to accommodate dis-
location pileup in the individual layers, and the deformation mech-
anism is dominated by Orowan-type bowing of individual
dislocations and the increase of strength follows with
rflow / lnðk=bÞ=k [14,34].

There are, however, only a few systematic studies on the layer
thickness effect on the fracture behavior of metal/ceramic multi-
layers systems [41–47]. In most of these papers, a systematic study
of the variation of fracture behaviors with layer thickness was pre-
sented, including Al/SiN/GaAs multilayers [41], Ti/ZrO2 multilayers
[42], Ti/TiN multilayers [28], Cr/CrN multilayers [45], Ti/TiAlSiN
multilayers [46] and V/NiAl multilayers [47], but the dependence
of fracture behavior on the layer thickness is still almost unex-
plored. Most of previous studies focused on the fracture behaviors
of metallic/ceramic multilayers under nanoindentation. Different
loading way was corresponding to different stress situation, which
caused different fracture behaviors for the same multilayered film.
However, there was the lack of the layer thickness effect on the
fracture behaviors of the whole multilayer-substrate system under
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three-point bending. In this paper, individual-layer-thickness
effect on fracture behavior of Al/Si3N4 multilayers on Si substrate
under three-point bending is investigated and discussed. It is found
that not only the fracture behavior of the multilayer itself, but also
the fracture behavior of the whole multilayer-substrate system is
clearly dependent on the individual layer thickness. When the
individual layer thickness is large (250 nm), the failure of the
whole system was dominated by the fracture of the substrate,
while the failure of the whole system was dominated by the frac-
ture of the multilayer with smaller individual layer thickness (50
nm).
Fig. 2. X-ray diffraction patterns of Al/Si3N4 multilayers with different individual
thicknesses.
2. Experimental

Al/Si3N4 multilayer films were deposited on (1 0 0) oriented
393 lm-thick Si wafers using DC and RF magnetron sputtering at
a base pressure of 5.0 � 10�5 Pa with a power of 210 W and 110
W, respectively. Before deposition, the Si wafers were cleaned with
7% HF acid. The deposition rate was 1.56 nm/s for Al and 0.18 nm/s
for Si3N4. The individual layer thickness k was identical for Al and
Si3N4 layers, and 3 types of multilayers were fabricated with differ-
ent individual layer thicknesses of 50 nm, 100 nm and 250 nm. The
total thickness of the multilayer films was always 1.0 µm and the
surface layer (topmost layer) was always Al.

The X-ray diffraction (XRD) experiment was carried out in
Bragg-Brentano geometry with Cu Ka radiation (Siemens D5000).
The TEM lamellar samples before the bending test were prepared
with focused ion beammicroscope (FIB, Zeiss nanoanalytics Auriga
60). The original cross-sectional microstructure of the multilayers
was observed by transmission electron microscope (TEM, FEI Tec-
nai 20S-TWIN). The fracture behaviors of the multilayers with dif-
ferent individual thicknesses were investigated by three-point
bending test with the loading rate 1.0 lm/s, as shown in Fig. 1.
The bending test of the multilayers was applied for five times cor-
responding to every individual layer thickness. The length, the
width and the span (Ls) of the bending specimen was 90, 10 and
70 mm, respectively. The fracture behavior was investigated by
using a field-emission scanning electron microscope (SEM, Hitachi
S 4800).
3. Results and discussion

Fig. 2 shows the XRD patterns of the multilayers with different
individual layer thickness. The (1 1 1) diffraction peaks of Al were
observed for all the Al/Si3N4 multilayers with different individual
thickness, while the (2 0 0), (2 2 0) and (3 1 1) diffraction peaks
of Al were only observed for the 100 nm-thick Al layers and 250
nm-thick layers. This indicates that the (1 1 1) out-of-plane texture
became stronger with decreasing the individual layer thickness.
There were no diffraction peaks observed corresponding to the
peaks of crystalline Si3N4, indicating that the Si3N4 layers are
Fig. 1. Schematic diagram of macroscopic structure of Al/Si3N4 multilayers on Si (1
0 0) substrates under three-point bending test.
amorphous. In order to clarify the microstructure of the multilay-
ers with different individual thicknesses, the TEM investigation
has been performed and the TEM cross-sectional morphology of
the multilayers is shown in Fig. 3. Columnar grain structure was
found both in the 50 nm-thick Al layers (Fig. 3(a)) and in the
250 nm-thick Al layers (Fig. 3(b)).

Fig. 4(a) shows the relationship between the loading force and
the bending deflection for the whole multilayer-substrate system
with different individual layer thicknesses. From Fig. 4(a) it can
be found that the deflection at fracture became higher as the indi-
vidual layer thickness increased. Moreover, the deflection at frac-
ture of the 250 nm-thick multilayer was similar with that of the
Si substrate. The whole Al/Si3N4 multilayer subjected to the tensile
stress during the three-point bending test, because the total thick-
ness of the Al/Si3N4 multilayer (1.0 lm) was far less than the thick-
ness of the Si substrate (393 lm). Generally, the bending strain on
the multilayers can be evaluated by Eq. (1), which is as follows:

etop ¼ Mmax � ðhm þ hsÞ
2EIz

� 1þ 2bþ ab2

ð1þ bÞ � ð1þ abÞ ð1Þ

in which, Mmax ¼ FLs
4 , F ¼ 48EIzf c

L3s
, a ¼ Em

Es
, b ¼ hm

hs
. Mmax is the max bend-

ing moment; Iz is the moment of inertia of the cross section for the
neutral plane; EIz stands for the bending stiffness of the whole spec-
imen; Ls is the span of the specimen; Em and Es is the elastic modu-
lus of the multilayer and the substrate, respectively; hm and hs is the
thickness of the multilayer and the substrate; fc is the deflection of
the multilayers. Due to b << 1, the bending strain can be described
by Eq. (2) as follows:

etop ¼ 6ðhm þ hsÞ � f c
L2s

ð2Þ

According to the Eq. (2), the bending strain of the multilayers at
fracture was obtained with different individual layer thickness as
shown in Fig. 4(b). From Fig. 4(b) one can see that the bending
strain of the multilayers at fracture increases with the individual
layer thickness increasing, indicating the size effect on the bending
deformation ability of the Al/Si3N4 multilayers. The thicker the
individual layer is, the higher the bending deformation ability is.
Moreover, in this work, because the Al/Si3N4 multilayers were
sputtered on the Si substrate, the multilayers and Si substrate were
subjected to the bending deformation together during the three-
point bending test. Therefore, the multilayers were confined by
the Si substrate in the bending process. The surface strain of Si sub-
strate at fracture was far higher than that of the 50 nm-thick mul-
tilayer at fracture. This indicated that the fracture of the
multilayers is extended in the whole multilayer-substrate system.



Fig. 3. TEM cross sectional images of Al/Si3N4 multilayers with individual layer thicknesses of 50 nm (a) and 250 nm (b).

Fig. 4. (a) The relationship between applied load and the bending deflection of the Si substrate and the Al/Si3N4 multilayers with different individual layer. (b) Variation of the
bending strain with the bending deflection obtained from different layer-thick multilayer at fracture.
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As the individual layer thickness increased from 50 nm to 100 nm,
the fracture is still over the whole system. With the individual
layer thickness increasing to 250 nm, the surface strain of the mul-
tilayer at fracture was comparative with that of the Si substrate.
This caused the fracture in the Si substrate more pronounced.

Fig. 5 shows the fracture morphology of Al/Si3N4 multilayers
with different individual layer thickness. The insets in Fig. 5(a),
(c) and (e) show the macroscopic fracture morphology correspond-
ing to the different individual layer thickness, respectively. Fig. 5
(b), (d) and (f) is the magnified view of the rectangle region in
Fig. 5(a), (c) and (e), respectively. Al layers was marked by the
arrow in Fig. 5(b), (d) and (f). From the insets with different indi-
vidual layer thickness, it was found that the more and more broken
fragments appeared with increasing the individual layer thickness.
In order to clarify the fracture behaviors of the whole system
between the multilayer and the substrate, the magnified observa-
tion of the multilayers was obtained as shown in Fig. 5(b), (d) and
(f). It was found that the occurrence of necking in Al layers and
brittle fracture in Si3N4 layers for 250 nm-thick multilayers (see
Fig. 5(f)). Under the bending force, the multilayers can be deformed
with the substrate together due to the certain plastic deformation
ability. When the bending strain on the multilayers reached
0.073%, the occurrence of fracture in the substrate dominated the
failure of the whole system. This is the main reason why the bend-
ing deflection of the multilayers with 250 nm layer thickness was
comparative that of Si substrate (see Fig. 4(a)). With the individual
layer thickness decreasing to 100 nm, there appeared the fracture
stage between Al layers and Si3N4 layer besides the necking in Al
layers and brittle fracture in Si3N4 layers (see Fig. 5(d)). With the
bending force increasing, the tensile strain of the multilayers
increased, and then the occurrence of the plastic deformation in
the Al layers and the brittle fracture in the Si3N4 layers leaded to
the delamination at interface, which caused the fracture of 100
nm-thick multilayers and then dominated the failure of the whole
system, which is the main reason why the bending deflection of
100 nm-thick multilayers was less than that of Si substrate (see
Fig. 4(a)). As the individual layer thickness decreased to 50 nm,
which there was not distinguishing necking phenomenon in Al lay-
ers compared with the 250 nm-thick multilayers (see Fig. 5(b)).
When the tensile strain of the multilayer reached 0.026% (see
Fig. 4(b)), the Si substrate was not fractured (see Fig. 4(a)). How-
ever, because the plastic deformation in the metallic layer became
more difficult at nanometer scale, the ability of bending deforma-
tion became lower, which caused that the multilayers fractured.
This leaded to the failure of the whole system.

As above, for the Al/Si3N4 multilayers with layer thickness at
submicron scale, it is difficult for the stress concentration forma-
tion at interface between the multilayer and the substrate, which
the failure of the whole system was dominated by the fracture of
substrate. For the Al/Si3N4 multilayers with layer thickness at
nanometer scale, due to lower plastic deformation ability it is easy
for the stress concentration formation at interface between the



Fig. 5. SEM images of the fracture morphology around the with different individual layer-thick Al/Si3N4 multilayers: (a) 50 nm; (c) 100 nm; (e) 250 nm. (b), (d) and (f)
corresponding to the local magnification of the rectangle region in (a), (c) and (e), respectively. Al layers were marked by the arrow. The insets in (a), (c) and (e) are the
photographs of the fractured specimens.
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multilayer and the substrate [34], and the failure of the whole sys-
tem was dominated by the fracture of the multilayer, although the
thickness of the multilayer was negligible compared with the
whole film-substrate system. This explained why the broken frag-
ments became less with the individual layer thickness decreasing
from 250 nm to 50 nm.
4. Conclusion

The fracture behavior of Al/Si3N4 multilayers prepared on Si
substrate by magnetron sputtering with different individual layer
thickness was investigated under three-point bending test. There
is a significant layer thickness effect on the fracture behavior of
the whole multilayer-substrate system. The failure of the whole
system was dominated by the fracture of substrate when the layer
thickness is at submicron scale, while the failure of the whole sys-
tem was dominated by the fracture of the multilayer when the
layer thickness is at nanometer scale. With decreasing individual
layer thickness from 250 nm to 50 nm, the fracture strain on the
Al/Si3N4 multilayer decreased from 0.073% to 0.026%.
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